| | | | | | - 1 | J 1 | | | 7 01 | | γ | TIL OTTOON | UASE009 | |------------|--|---|------------------|--|--|--|---|---|-------------------------------|--|---|--|--| | Sample ID: | 1 | | of logving in | UASE030 | UASE001 | UASE002 | UASE003 | UASE004 | USSE005 | UASE006 | UASE007 | UASE008 | UASEOUS | | CLP (b) | Superfund Chemical
Data Matrix (SCDM) | Superfund
Chemical Data
Matrix (SCDM) | 3 bask grov | Lower Ross Basin
Drainage upstream of
Grand Mogul Mine | Animas River
downstream of the
confluence with Cement
Creek | Cement Creek
immediately upstream
of the confluence with
the Animas River | Animas River upstream
of the confluence with
Cement Creek | Cement Creek
downstream of the
confluence with the
South Fork of
Cement Creek | South Fork of Cement
Creek | Cement Creek downstream of
the American Tunnel and
upstream of the confluence with
the South Fork of Cement Creek | Discharge from the
American Tunnel
Immediately above
confluence with
Cement Creek | Cement Creek
upstream of the
American Tunnel | Cement Creek downstream o
the confluence with the North
Fork of Cement Creek | | Analytes | RDSC
(mg/kg) | CRSC
(mg/kg) | MCUMCUC
mg/lg | (<u>Background)</u>
(mg/kg) | (mg/kg) | Aluminum | - | 1 | 47100 | 15700 | 6860 | 7030 | 8570 | 9570 | 8370 | 7030 | 13400 | 13700 | 4940 | | Antimony | | . / | - | 1.2 U | 2.1 UJ | 1.4 UJ | 1.3 UJ | 1.3 UJ | 1.3 UJ | 2.8 J 💥 | 5 UJ | 1.7 UJ | 2.7 UJ | | Arsenic | | . \ | 94.5 | 31.5 J+ | 45.3 J | 34.1 J | 5.9 J | 20.3 J | 11.6 J | 50.2 J | 17.7 J | 33.3 J | 15.2 J | | Barium | | - / | 282.6 | 94.2 J+ | 559 J ☆ ¥ | 210 J | 108 J | 97.3 | 78.8 | 146 | 24.9 UJ | 92.7 | 71.6 | | Beryllium | - | 1 | 4.2 | 1.4 J+ | 1 UJ | 0.72 U | 1 J+ | 0.65 U | 0.66 J+ | 0.95 U | 2.5 U | 1.1 J+ | 1.4 UJ | | Cadmium | | /- | 31.2 | 10.4 J 3/. 2 | 1 UJ | 0.72 U | 5.8 J | 0.9 | 0.64 UJ | 2.9 | 2.5 U | 1.3 J | 1.4 UJ | | Calcium | | 1. | 5970 | 1990 | 1100 | 1010 | 2560 | 1530 | 1230 | 1420 | 2490 U | 1660 | 1370 U | | Chromium | | 1. | 24 | 8 | 6.6 | 6.4 | 6.5 | 7 | 6.2 J | 8.4 | 5 U | 7.6 J | 6.4 J | | Cobalt | | / - | 61.5 | 20.5 | 3.9 J | 4.3 J | 10.9 J | 11.8 | 6.5 | 3.9 | 2.5 U | 16.5 | 6.8 | | Copper | | - | 3720 | 1240 J+ 3724 | 48.7 J | 53 J | 119 J | 86.5 | 65 J | 279 | 28.1 | 209 J | 124 J | | Iron | - / | - | 2 3600 | 71200 213600 | 78100 | 68800 | 20800 | 57600 | 34800 | 114000 | 238000 ☆ 🔏 | 37300 | 159000 | | Lead | - / | | 4440 | 1480 J 4440 | 459 | 322 | 612 | 726 J | 145 | 5720 J ☆ | 217 J | 711 | 341 | | Magnesium | - / | | 34500 | 11500 | 3030 | 4080 | 5610 | 6070 | 1460 | 3810 | 913 | 8730 | 1370 U | | Manganese | - / | | 19800 | 6600 19800 | 333 | 506 | 6750 | 1530 | 839 J | 1340 | 336 | 4130 J | 2010 J | | Nickel | -/ | | 35.1 | 11.7 J | 3.4 J | 4 J | 8.2 J | 4.4 | 4.2 J | 3.8 | 1.3 | 8 J | 2.2 J | | Potassium | | | 1926 | 642 J+ | 1700 J+ | 889 J+ | . 745 J+ | 751 J+ | 902 J+ | 1560 J+ | 231 J+ | 825 U | 1370 U | | Selenium | 1- | | | 3 U | 1.6 J | 0.81 J | 0.099 J | 3.3 UJ | 3.2 UJ | 4.8 UJ | 12.4 UJ | 4.1 UJ | 6.9 UJ | | Silver | 1- | | 3.6 | 1.2 J | 4.5 J+ ☆ | .2.5 J+ | 1.5 J+ | 1.7 J+ | 0.64 UJ | 12.1 J+ ☆ | 2.5 UJ | 2.1 J | 4 J 🗶 | | Sodium | 1 - | | 1800 | 600 UJ | 1040 U | 723 U | 641 U | 62.3 J+ | 640 U | 118 J+ | 44.5 J+ | 825 U | 1370 U | | Thallium | 1 - | | 1.32 | 0.44 J- | 1 U | 0.72 U | 0.64 U | 0.39 J+ | 0.64 UJ | 0.6 J+ | 2.5 UJ | 0.83 UJ | 1.4 UJ | | Vanadium | - | - | 122.7 | 40.9 | 49.7 | 44.8 | 30.6 | 47.3 | 52.2 | 47.7 | 41.8 | 64.1 | 27.3 | | Zinc | 1 | - | 4500 | 1500 J 4500 | 205 J | 199 J | 1470 J | 261 J | 145 J- | 815 J | 269 J | 289 J- | 242 J- | possible Bleg &? | Sample ID: | MAR NEW YORK SEASON AND AN | local state persons | DESCRIPTION OF | UASE030 | UASE010 | UASE011 | UASE012 | UASE013 | UASE014 | UASE015 | UASE016 | UASE017 | UASE018 | |----------------------|--|---|---------------------|--|----------------|---|---|---|--|---|--|--|--| | ocation: | Superfund Chemical
Data Matrix (SCDM) | Superfund
Chemical Data
Matrix (SCDM) | | Lower Ross Basin
Drainage upstream of
Grand Mogul Mine | | North Fork of Cement
Creek downstream of | North Fork of Cement
Creek upstream of the
Gold King 7 Level Mine | Cement Creek
upstream of the
confluence with the
North Fork of
Cement Creek | Cement Creek
downstream of Red and
Bonita Mine | Drainage channel adjacent to
county road below Red and
Bonita | Cement Creek
upstream of Red and
Bonita Mine | Cement Creek
downstream of
wetland that
channels Mogul
Mine drainage | Cement Creek upstream of
wetland that contains Mogul
Mine drainage | | | RDSC
(mg/kg) | CRSC
(mg/kg) | MCL/MCLG
(mg/kg) | (Background)
(mg/kg) | (mg/kg) | Analytes
Aluminum | | (44.45) | 47100 | 15700 | 0220 | 2020 | 10900 | 4520 | 3850 | 4670 | 8140 | 8100 | 13100 | | Antimony | | 1 | 47100 | 1.2 U | 9330
1.3 UJ | 2.8 UJ | 1.3 UJ | 2.8 UJ | 3 UJ | 2.3 J | 3.2 UJ | 1.3 UJ | 1.3 UJ | | Arsenic | | | 94.5 | 31.5 J+ | 26.2 J | 36.7 J | 17.3 J | 20.5 J | 24.5 J | 23.2 J | 57.5 J | 17.7 J | 28.1 J | | Barium | | - | 282.6 | 94.2 J+ | 51.8 | 30.7 | 102 | 61.9 | 36.1 | 46.5 | 200 | 121 | 90.8 | | Beryllium | | - X | 4.2 | 1.4.J+ | 0.64 UJ | 1.4 UJ | 0.63 U | 1.4 UJ | 1.5 UJ | 1.1 UJ | 1.6 UJ | 0.63 U | 0.73 J+ | | Cadmium | | (-) | 31.2 | 10.4 J | 0.64 UJ | 0.11 | 0.63 U | 1.4 UJ | 1.5 UJ | 2.4 J | 1.6 UJ | 0.63 U | 2 | | Calcium | | 1 - | 5970 | 1990 | 1710 | 1380 U | 1890 | 1410 U | 1500 U | 1130 | 1940 | 1740 | 2020 | | Chromium | | / - \ | 24 | 8 | 9.1 J | 5.1 J | 8 | 4.3 J | 6.1 J | 4 J | 11.9 J | 6.9 | 9 | | Cobalt | | / . \ | 61.5 | 20.5 | 4.3 | 2.8 U | 10.4 | 6 | 3 U | 2.2 U | 23.7 | 13.2 | 11.2 | | Copper | - / | - \ | 3720 | 1240 J+ | 42.8 J | 113 J | 73.1 | 84 J | 147 J | 112 J | 250 J | 63.6 | 193 | | Iron | - / | | 213600 | 71200 | 18200 | 397000 ☆ 🎍 | 37100 | 203000 | 218000 ☆ 🚜 | 442000 ☆ ❖ | 65400 | 38100 | 35000 | | Lead | / | _ | 4440 | 1480 J | 294 | 136 | 532 J | 362 | 773 | 457 | 1460 | 379 J | 543 J | | Magnesium | -/ | - | 34500 | 11500 | 8680 | 1380 U | 5380 | 1410 U | 1500 U | 1120 U | 2260 | 5830 | 8970 | | Manganese | -/ | - | 19800 | 6600 | 624 J | 156 J | 675 | 1910 J | 489 J | 239 J | 2360 J | 1420 | 3650 | | Nickel | 1- | | 35.1 | 11.7 J | 4.1 J | 1.4 UJ | 7.1 | 1.6 J | 2 Ј | 1.1 UJ | 12.3 J | 6.3 | 5.2 | | Potassium | /- | 7 <u>4</u> 7 | 1926 | 642 J+ | 638 U | 1380 U | 1000 J+ | 1410 U | 1500 U | 1120 U | 1580 U | 440 J+ | 501 J+ | | Selenium | / - | | -/ | 3 U | 3.2 UJ | 6.9 UJ | 3.1 UJ | 7.1 UJ | 7.5 UJ | 5.6 UJ | 7.9 UJ | 3.1 UJ | 3.3 UJ | | Silver | / - | - | 3.6 | 1.2 J | 0.88 J | 1.4 UJ | 1.3 J+ | 2.3 J | 8.5 J ☆ | 3.9 J ☆ | 1.6 UJ | 1.3 J+ | 1.7 J+ | | Sodium | 7 - | | 1800 | 600 UJ | . 638 U | 1380 U | 99.3 J+ | 1410 U | 1500 U | 1120 U | 1580 U | 30.8 J+ | 21.9 J+ | | Thallium | - | - | 1.32 | 0.44 J- | 0.64 UJ | 1.4 UJ | 0.35 J+ | 1.4 UJ | 1.5 UJ | 1.1 UJ | 1.6 UJ | 0.3 J+ | 0.4 J+ | | Vanadium | | - | 122.7 | 40.9 | 29.1 | 27.8 | 49 | 29.7 | 34 | 31.7 | 62 | 46.3 | 32.2 | | Zinc | _ | 1-1 | 4500 | 1500 J | 145 J- | 44.1 J- | 73.8 J | 240 J- | 465 J- | 1040 J- | 378 J- | 184 J | 332 J | These sed & appear of - still All chk plean for nort TABLE 3 Sediment Results (Continued) | | | | | | | | (| Continued 1 | | | TIA CITADAD | UASE032 | UASE033 | | | |----------|--|---|---------------|---|---|--|--------------|-------------|--|---|---------------------------------|---|---|--|--| | | | | | | | UASE020 | UASE021 | UASE022 | UASE023 | UASE024 | UASE029 | UASE032 | | | | | nple ID: | Superfund Chemical
Data Matrix (SCDM) | Superfund
Chemical Data
Matrix (SCDM) | / | UASE030 Lower Ross Basin Drainage upstream of Grand Mogul Mine | UASE019 Mogul Mine drainage (in wetland) | Cement Creek upstream
of Mogul Mine | Cement Creek | | Cement Creek upstream
of Mogul North Mine and
downstream of
confluence with Lower
Ross | Cement Creek downstream of
Queen Anne Mine and upstream
of confluence with Lower Ross | Animas River Below
Silverton | Animas River
downstream of the
confluence with
Mineral Creek | Mineral Creek upstream of
confluence with the Anima
River | | | | | RDSC | CRSC | MCL/MCLG | (Background) | | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (nig/kg) | (mg/kg) | | | | | | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/ag) | | | 图·数字用是1985年2月19年1 | 11500 | 12300 | 3000 | 28200 | | | | | (mg/kg) | (mg/kg) | | | | 12200 | 13600 | 6720 | 3020 | 1.7 U | 1.6 UJ | 1.3 UJ | 3.5 UJ | | | | alytes | | / | 47100 | 15700 | 5960 | 1.4 UJ | 1.3 U | 6.8 U | 1.7 J | 49.4 J+ | 27.3 J | 14.2 J | 26.7 J | | | | ıminum | | N - / | - | 1.2 U | 1.6 UJ | 36.8 J | 25.8 J+ | 42.6 J+ | 45.6 J+ | 205 J+ | 261 J | 79.3 J | 159 | | | | timony | | 1 | 94.5 | 31.5 J+ | 62.5 J | 147 | 74.3 J+ | 119 J+ | 264 J+ 🔐 | 1.3 J+ | 0.89 J+ | 0.75 J+ | 1.7 UJ | | | | enic | | 1 | 282.6 | 94.2 J+ | 121 | 1.4 J+ | 1.3 J+ | 3.4 UJ | 1.3 J+ | 7 J | 2 J | 0.97 J | 1.7 UJ | | | | rium | | | 4.2 | 1.4 J+ | 0.8 U | 7.4 | 6 J | 3.4 UJ | 6 J | 1280 | 2010 | 2050 | 1950 | | | | ryllium | • | 1 | 31.2 | 10.4 J | 1.4 | | 1310 | 3380 U | 718 U | | 5.6 | 6.9 | 5.1 J | | | | dmium | • | 1 | 5970 | 1990 | 804 U | 1110 | 7.1 | 19.7 | 6.2 | 8.2 | 12.3 J | 11 J | 18.6 | | | | lcium | | / | 24 | 8 | 8.5 | 9.6 | 12.3 | 19.7 | 15.3 | 15.8 | 167 J | 201 J | 216 J | | | | romium | 3. | V - \ | 61.5 | 20.5 | 5.4 | 12.9 | 516 J+ | 303 J+ | 424 J+ | 294 J+ | 58100 | 26000 | 62200 | | | | balt | | 4 - | 3720 | 1240 J+ | 177 | 546 | 37200 | 141000 | 5150 | 27100 | 734 | 187 | 210 | | | | pper | - / | | 213600 | 71200 | 116000 | 31900 | 481 J | 668 J | 2030 J | 754 J | 4270 | 3730 | 2280 | | | | n | - / | - | 4440 | 1480 J | 546 J | 779 J | 7200 | 3380 U | 1090 | 5670 | 2710 | 1160 | 897 J | | | | ad | - / | - | 34500 | 11500 | 3260 | 5340 | 4710 | 1180 | 7960 | 11500 | 5.2 J | 5.9 J | 6 J | | | | agnesium | -/- | - | 19800 | 6600 | 1130 | 5130 | 10.3 J | 5.9 J | 7.7 J | 7.8 J | 1260 J+ | 574 U | 1740 U | | | | anganese | -/ | | 35.1 | 11.7 J | 4.5 | 6.9 | 664 U | 3380 U | 718 U | 1210 J+ | 0.52 J | 0.45 J | 8.7 UJ | | | | ckel | | - | 1926 | 642 J+ | 842 J+ | 648 J+ | 3.3 U | 17 U | 3.6 U | 4.3 U | 2.8 J+ | 9.67 U | 1.7 UJ | | | | tassium | /- | - | 1920 | 3 U | 4 UJ | 3.5 UJ | 2 J | 27.1 J ☆ № | 11.8 J ☆ X | | 814 U | 674 U | 1740 U | | | | lenium | /- | - | 3.6 | 1.2 J | 5.1 J+ ☆ 💥 | 2.8 J+ | 664 UJ | 3380 U | 718 UJ | 855 UJ | 0.81 U | 3.67 U | 1.7 UJ | | | | lver | 1 - | | 1800 | 600 UJ | 65.3 J+ | 29.5 J+ | 0.41 J- | _0.31 J- | 0.77 | 0.88 | 41.1 | 36.1 | 31.3 | | | | odium | 1 / - | | | 0.44 J- | 0.3 J+ | 0.4 J+ | 32.5 | 20.8 | 27.8 | 38 | 41.1
447 J | 289 J | 339 J- | | | | hallium | 1 / - | | 1.32 | 40.9 | 42.6 | 33.2 | | 350 J | 614 J | 899 J | 44/J | 2077 | | | | | /anadium | - | | 122.7
4500 | 1500 J | 444 J | 1990 J | 651 J | 3303 | | | | | | | | | | | | | | | | | UASE037 | UASE039 | UASE040 | UASE041 | UASE042 | UASE043 | |-----------|--|---|----------|---|---|---|---|--------------|--|---------------------|---|---|--------------------------| | imple ID: | Superfund Chemical
Data Matrix (SCDM) | Superfund
Chemical Data
Matrix (SCDM) | | UASE030 Lower Ross Basin Drainage upstream of Grand Mogul Mine | UASE034 Animas River upstream of the confluence with Mineral Creek | UASE035 Cement Creek downstream of the Kendrick-Gelder Smelter | UASE036 Cement Creek upstream of the Kendrick-Gelder Smelter | Cement Creek | Cement Creek upstream
of the confluence with
Illinois Gulch drainage
and downstream of Ohio
Gulch drainage | Ohio Gulch drainage | Cement Creek
upstream of the
confluence with Ohio
Gulch drainage | Cement Creek
downstream of the
Anglo Saxon Mine
drainage | Anglo Saxon Mine drainag | | | | CRSC | MCL/MCLG | (Background) | | (mg/kg) | ocation: | RDSC | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | | | 5240 | 8220 | 5710 | 5060 | | | (mg/kg) | (mg/kg) | | | | 5900 | 7040 | 4890 | 5540 | 1,3 UJ | 1.5 UJ | 1.9 UJ | 2.5 UJ | | nalytes | (a) (b) (a) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | - / | 47100 | 15700 | 11600 | 1.6 UJ | 1.4 UJ | 1.6 UJ | 1.4 UJ | 54.8 J | 34.3 J | 37.2 J | 36.3 J | | luminum | | -/ | - | 1.2 U | 1.7 UJ | 41.7 J | 35.3 J | 57 J | 34 J | 582 J 🖈 🧎 | 121 J | 258 J | | | ntimony | | 1 | 94.5 | 31.5 J+ | 13.3 J | 424 J ☆ X | 342 J 🖈 🜌 | 317 J☆ | 4223 4 | 0.64 U | 0.74 U | 0.93 U | 10.3 J+ ☆ 🔏 | | senic | - | 1 | 282.6 | 94.2 J+ | 123 J | 0.78 U | 0.68 U | 0.82 U | 0.71 U | 2.6 J | 0.51 | 0.93 U | 4.1 J | | rium | - | \ \ . | 4.2 | 1.4 J+ | 0.87 U | 0.83 J | 1.4 J | 0.82 U | 0.71 U | 644 U | 1040 | 1040 | 4130 | | eryllium | • | 1 | 31.2 | 10.4 J | 0.87 U | 934 | 1040 | 822 U | 735 | 4.5 | 6.6 | 8.4 | 2.5 U | | admium | - | V \- | 5970 | 1990 | 1810 | 5.2 | 5.7 | 4.8 | 5.9 | 4.J | 5.5 J | 4.4 J | 17 J | | alcium | - | A - \- | 24 | 8 | 4.7 | 3.8 J | 4.8 J | 3.6 J | 3.1 J | 40.4 J | 55.2 J | 59.7 J | 110 J | | nromium | | 1 | 61.5 | 20.5 | 5.4 J | 42.7 J | 98.6 J | 41.8 J | 29.8 J | 44400 | 94600 | 123000 | 860000 ☆ 🏏 | | obalt | | | 3720 | 1240 J+ | 91.4 J | 71700 | 62200 | 88900 | 56500 | 598 | 334 | 417 | 255 | | opper | -/ | _ | 213600 | 71200 | 44300 | 394 | 306 | 541. | 361 | 2570 | 4550 | 2360 | 1240 U | | on | -/ | - \ | 4440 | 1480 J | 366 | | 3760 | 2180 | 2810 | 304 | 831 | 636 | 2410 | | ead | -/ | - | 34500 | 11500 | 6090 | 2440 | 580 | 436 | 311 | 3.3 J | 3.9 J | 3.6 J | 3.3 J | | agnesium | <i>F</i> | | 19800 | 6600 | 1440 | 421 | 3.4 J | 3.2 J | 2.8 J | 1230 J+ | 1060 J+ | 1410 J+ | 1240 U | | langanese | 1- | - | 35.1 | 11.7 J | 3.9 J | 3.1 J | 1090 J+ | 1200 J+ | 1270 J+ | 2 J | 0.81 J | 2.1 J | 0.21 J | | lickel | 1 / - | <u> </u> | 1926 | 642 J+ | 865 U | 1300 J+ | 1 1 1 | 1.4 J | 1.3 J | | 1 4 7 . | 2.2 J+ | 1.2 U | | otassium | / - | - | 1920 | 3 U | 0.51 J | 1.5 J | 1.4 J+ | 2.1 J+ | 1.9 J+ | 3.0 - 7 | 741 U | 926 U | 1240 U | | elenium | / - | | 3.6 | 1.2 J | 1.2 J+ | 2.4 J+ | 676 U | 822 U | 714 U | 644 U | 0.74 U | 0.99 J+ | 1.2 U | | ilver | | | 1800 | 600 UJ | 865 U | 781 U | 0.68 U | 0.82 U | 0.71 U | 0.64 U | 49.9 | 71.7 | 13.4 | | odium | • | | 1.32 | 0.44 J- | 0.87 U | 0.78 U | 42.3 | 48.6 | 34.6 | 36.4 | 186 J | 225 J | . 2470 J | | Thallium | • | | 122.7 | 40.9 | 25.8 | 40.7 | 360 J | 153 J | 136 J | 604 J | 100 3 | | | | Vanadium | | | 4500 | 1500 J | 241 J | 197 J | 3003 | | | | | | | - 15 flui without. TABLE 3 Sediment Results Continued | Sample ID: | | | | UASE030 | UASE044 | UASE045 | UASE046 | UASE047 | UASE049 | UASE050 | UASE054 | UASE056 | UASE058 | UASE059 | |------------|--|---|---------------------|--|--|-----------------------------|--|---|---|---|----------------------------|---|---|---| | Location: | Superfund Chemical
Data Matrix (SCDM) | Superfund
Chemical Data
Matrix (SCDM) | 1 | Lower Ross Basin
Drainage upstream of
Grand Mogul Mine | Cement Creek upstream
of the Anglo Saxon Mine
and downstream of
Minnesota Gulch
drainage | Minnesota Gulch
drainage | Cement Creek upstream
of the confluence with
Minnesota Gulch
drainage | Cement Creek
downstream of the
Elk Tunnel and
Fairview Gulch | Cement Creek upstream
of the confluence with
Fairview Gulch and the
Elk Tunnel discharge and
downstream of Georgia
Gulch | Cement Creek upstream of
Georgia Gulch and downstream
of the Mammoth Tunnel | Prospect Gulch
drainage | Coment Creek
downstream of the
Dry Gulch drainage | Cement Creek upstream of the
confluence with Dry Gulch
drainage | Cement Creek at the
toe of Grand Mogul
Mine | | Analytes | RDSC (mg/kg) | CRSC
(mg/kg) | MCL/MCLG
(mg/kg) | (Background)
(mg/kg) | (mg/kg) | | Aluminum | - | - / | 47100 | 15700 | 8860 | 10400 | 5070 | 6160 | 7840 | 6640 | 3730 | 6730 | 5750 | 986 | | Antimony | - | - / | | 1.2 U | 1.3 UJ | 1.4 UJ | 3.8 UJ | 1.6 UJ | 1.3 UJ | 1.6 UJ | 1.3 UJ | 2.2 UJ | 2.7 UJ | 23.3 J X / | | Arsenic | | 1 - / | 94.5 | 31.5 J+ | 34 J | 46.9 J | [15J th] | 24.3 J | 37.7 J | 34.7 J | 58.9 J | 20.3 J | 35.6 J | (969 J+ \$\frac{1}{2}\) | | Barium | | 1./ | 282.6 | 94.2 J+ | 191 J | 314 J ☆ | 80.61 | 226 J | 95.5 J | 250 J | 144 | 142 | 85.9 | 37.1J+ | | Beryllium | - | \-/ | 4.2 | 1.4 J+ | 0.66 U | 0.96 J+ | 1.9 U | 0.78 U | 0.64 U | 0.81 U | 0.63 UJ | 1.1 UJ | 1.4 UJ | 3 UJ | | Cadmium | - | X | 31.2 | 10.4 J | 2 J | 0.68 U | 1.9 U | 0.78 U | 17.5 J | 2.7 J | 0.77 J | 1.1 UJ | 2.7 J | 3 UJ | | Calcium | | /-\ | 5970 | 1990 | 2020 | 1350 | 1900 U | 867 | 1120 | 1050 | 627 U | 1100 U | 1370 U | 2980 U | | Chromium | | /- \ | 24 | 8 | 7 | 7.8 | 6.2 | 6.9 | 7.9 | 9.9 | 4.8 J | 6.4 J | 8 J | 11.3 | | Cobalt | | / - \ | 61.5 | 20.5 | 5.5 J | 14.8 J | 2.1 J | 2.9 J | 9.3 J | 6.4 J | 4 | 3.2 | 4.7 | 3 UJ | | Copper | | 7 - \ | 3720 | 1240 J+ | 76.4 J | 77.1 J | 112 J | 47.8 J | 159 J | 60 J | 64.9 J | 80.7 J | 212 J | 235 J+ | | Iron | <u> </u> | / - V | 213600 | 71200 | 67200 | 37000 | 341000 ☆ ❤ | 57100 | 33000 | 81600 | 53500 | 144000 | 266000 ☆ ✔ | 273000 ☆ ≥ | | Lead | - / | - 1 | 4440 | 1480 J | 361 | 342 | 1700 | 304 | 847 | 346 | 254 | 875 | 2050 | 1100 J | | Magnesium | - / | - | 34500 | 11500 | 5080 | 3850 | 2130 | 2360 | 6800 | 3090 | 2030 | 2820 | 2370 | 2980 U | | Manganese | - / | - | 19800 | 6600 | 804 | 1560 | 540 | 407 | 1200 | 1380 | 406 J | 659 J | 1300 J | 304 | | Nickel | / | - | 35.1 | 11.7 J | 3.6 J | 7.5 J | 2.3 J | 2.8 J | 7.1 J | 4.7 J | 1.9 J | 2.9 J | 2.5 J | 3 UJ | | Potassium | -/ | | 1926 | 642 J+ | 933 J+ | 1310 J+ | 1900 U | 1350 J+ | 636 U | 1230 J+ | 627 U | 1250 J+ | 1370 U | 2980 U | | Selenium | | | 1. | 3 U | 1.1 J | 1.1 J | 0.63 J | 2 J | 0.92 J | 2 | 3.1 UJ | 5.5 UJ | 6.9 UJ | 15 U | | Silver | -/- | 4 N. W. | 3\6 | 1.2 J | 1.4 J+ | 1.5 J+ | 4.1-J+ # > | 1.9 J+ | 2.9 J+ | 1.7 J+ | 0.95 J | 2.3 J | 5 J ☆ ** | 13.2 J ☆ 🏖 | | Sodium | | - | 1800 | 600 UJ | 657 U | 684 U | 1900 U | 782 U | 636 U | 813 U | 627 U | 1100 U | 1370 U | 2980 UJ ☆ | | Thallium | | | 1.32 | 0.44 J- | 0.66 U | 0.75 J+ | 1.9 U | 0.8 J+ | 0.64 U | 0.9 J+ | 0.63 UJ | 1.1 UJ | 1.4 UJ | 0.19 J- | | Vanadium | N/ - | - | 122.7 | 40.9 | 45.2 | 48.6 | 96.9 | 56.3 | 65.9 | 72.2 | 36.5 | 62 | 37.2 | 57.1 | | Zinc | | | 4500 | 1500 J | 478 J | 144 J | 177 J | 131 J | 4910 J ☆ 🔉 | 693 J | 192 J- | 206 J- | 628 J | 524 J | The associated numerical value is an estimated quantity because quality control criteria were not met. Presence of the element is reliable. The analyte was not detected at or above the CRDL. U UJ J-D The analyte was not detected at or above the CRDL. The reported quantitation limt is estimated because Quality Control criteria were not met. Element may not be present the sample. The associated numerical value is an estimated quantity but the result may be biased low. The analyte was identified in a sample at a secondary dilution factor. The analyte was detected at three times greater than the background concentration. The analyte was detected at three times greater than the background concentration. Washe Ale Source Soil | | 1000 | | | | | Wash | 114_Sour | ce Soil | | | | | | | | | |---------------------|---|-------------------------|-----------------|-----------------|-----------------------------------|--------------------------------------|--------------------------------------|--------------------------------|---------------------------------|----------------------------------|---|--|--|--|---|---------------------------------------| | Field Sample ID: | A Sorpel | athory * | UASO001 | UASO002 | UASO003 | UASO004 | UASO005 | UASO006 | UASO007 | UASO008 | UASO009 | UASO010 | UASO011 | UASO012 | UASO013 | UASO014 | | Location: | Superfund Chemidal Data Matrix (SCDM) Reference Dose | Superfund Chemical Data | American Tunnel | American Tunnel | Red and Bonita Mine –
top pile | Red and Bonita Mine -
middle pile | Red and Bonita Mine -
bottom pile | Mogul North Mine
waste pile | Grand Mogul stope-
west side | - Grand Mogul stope
east side | - Grand Mogul Mine
waste piles - east side | The second secon | Grand Mogul Mine
waste piles – west
side | Mogul Mine
waste piles –
west side | Mogul Mine
waste piles –
adjacent to shed | Mogul Mine waste
piles – east side | | Analytes | Some (mg/kg) OR RASC | (mg/kg) CRSC | (mg/kg) | Aluminum | and define be | CON | 13900 | 12900 | 8780 | 1470 | 2260 | 1130 | 1450 | 2020 | 11200 | 665 | 13000 | 906 | 3270 | 19500 | | Antimony | 31 | | 1.3 UJ | 1.2 UJ | 1.8 J | 1.3 U | 12 J | 13.5 J | 11.7 J | . 1.1 U | 1.1 U | 12.2 J | 1.1 U | 1.1 U | 3.6 J | 1.2 U | | Arsenic | 23 | 0.43 | 23.7 J | 13.5 J | 9.1 J+ | 15.7 J+ | 29.3 J+ | 34.9 J+ | 38.6 J+ | 90.2 J+ | 96.8 J+ | 55.2 J+ | 32.8 J+ | 13.6 J+ | 37.7 J+ | 31.9 J+ | | Barium . | 5,500 | | 117 | 113 | 105 J+ | 18.7 J+ | 68.3 J+ | 83.8 J+ | 97.2 J+ | 72.1 J+ | 34.9 J+ | 81.3 J+ | 46.1 J+ | 37.1 J+ | 68.4 J+ | 154 J+ | | Beryllium | 160 | | 0.64 UJ | 0.6 UJ | 0.6 UJ | 0.65 UJ | 0.78 UJ | 0.56 UJ | 0.55 UJ | 0.57 UJ | 0.55 UJ | 0.54 UJ | 0.54 UJ | 0.55 UJ | 0.55 UJ | 0.79 J+ | | Cadmium | 39 | | 9.6 J | 0.6 UJ | 0.63 J | 0.65 UJ | 35.4 J | 5 J | 7.6 J | 1.1 J | 0.55 UJ | 40 J | 0.7 J | 0.55 UJ | 9.1 | 3.7 J | | Calcium | | | 5910 | 2080 | 1780 | 648 U | 775 U | 563 U | 551 U | 807 | 1360 | 535 U | 2030 | 554 U | 547 U | 1540 | | Chromium | 230 | | 8.4 J | 10 J | 4.9 | 1.8 | 2.2 | 1.3 | 1.1 U | 2,3 | 11.9 | 1.1 U | 10 | 1.1 U | 2.7 | 9.9 | | Cobalt | | | 8 | 6.8 | 1.3 | 1 | 0.78 U | 0.56 U | 0.55 U | 0.88 | 5.5 | 0.54 U | 4.6 | 0.55 U | 1.5 | 21.4 | | Copper | | | 244 J | 40.6 J | 195 J+ | 104 J+ | 286 J+ | 211 J+ | 471 J+ | 111 J+ | 47.1 J+ | 4600 J+ | 33.1 J+ | 63.1 J+ | 285 J+ | 162 J+ | | Iron | | TA SE | 47800 | 36900 | 102000 | 150000 | 308000 | 8170 | 16900 | 21500 | 36000 | 22200 | 25200 | 7700 | 46300 | 55900 | | Lead | | | 1820 | 241 | 6440 J | 1850 J | 5080 J | 3880 J | 4920 J | 4510 J | 1030 J | 15500 J | 2260 J | 1050 J | 3170 J | 1070 J | | Magnesium | | | 11200 | 10700 | 5600 | 648 U | 775 U | 563 U | 551 U | 950 | 11100 | 535 U | 12700 | 554 U | 1920 | 9940 | | Manganese | 11,000 | | 1180 J | 796 J | 452 | 630 | 136 | 423 | 122 | 852 | 1620 | 177 | 3280 | 135 | 433 | 5570 | | Manganese
Nickel | 1600 | | 5.8 J | 6.6 J | 2.3 J | 1.3 J | 0.78 UJ | 0.56 UJ | 0.55 UJ | 0.74 J | 5.3 J | 0.54 UJ | 5.3 J | 0.55 UJ | 1.4 J | 9.5 J | | Potassium | | | 1070 J+ | 1030 J+ | 790 J | 648 U | 775 U | 714 J+ | 1240 J+ | 1460 J+ | 872 J+ | 1200 J+ | 671 J+ | 961 J+ | 769 J+ | 1090 J+ | | Selenium | 390 | | 3.2 UJ | 3 UJ | 3 U | 3.2 U | 3.9 U | 2.8 U | 2.8 U | 2.8 U | 2.8 U | 3.4 | 2.7 U | 2.8 U | 2.7 U | 3 U | | Silver | 390 | | 5.4 J | 1.3 J | 103 J | 10.4 J | 27.5 J | 34.6 J | 54 J | 8.4 J | 5.7 J | 113 J | 4.6 J | 6.9 J | 22.9 J | 2.7 J | | Sodium | | | 640 U | 605 U | 604 UJ | 648 U | 775 U | 563 UJ | 551 UJ | 569 UJ | 552 UJ | 535 UJ | 541 UJ | 554 UJ | 547 UJ | 597 UJ | | Thallium | | 4.4 | 0.64 UJ | 0.6 UJ | 0.5 | 0.23 J- | 0.1 J- | 0.61 | 0.85 | 1.2 | 0.36 J- | 0.73 | 0.38 J- | 0.43 J- | 0.37 J- | 0.56 | | Vanadium | 550 | E a for | 53.6 | 65.3 | 26 | 23.7 | ÷ 49.7 | 7.8 | 12 | 17.5 | 62.1 | 7.1 | 60.8 | 4.9 | 15.4 | 47.5
498 J | | Zinc | 23,000 | | 2610 J- | 102 J- | 167 J | 265 J | 11300 J | 1400 J | 2100 J | 319 J | 187 J | 10400 J | 210 J | 140 J | 2580 J | 498 J | The associated numerical value is an estimated quantity because quality control criteria were not met. Presence of the element is reliable U The analyte was not detected at or above the CRDL. The reported quantitation limt is estimated because Quality Control criteria were not met. Element may not be present the sample. The associated numerical value is an estimated quantity but the result may be biased lo The associated numerical value is an estimated quantity but the result may be biased high The associated numerical value was detected below the CRDL, but greater than the method detection limit and is therefore an estimate (qualified by laboratory). define seronyms, e.g. scor URSC mg/rg * for comparison only blaske file samples contain AI As, Ba, Cd, Ca, Co, Co, Cu Fe, Pb, Mg, Mn, Ni, K, Ag, 4th, V, Zu